Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Studies with a compromised isolated hepatocyte model system.
نویسندگان
چکیده
The role of active oxygen species and lipid peroxidation in the toxic effects of diquat, paraquat and other bipyridyl herbicides remains controversial. In vitro studies have shown that these compounds are potent generators of active oxygen species by redox cycling and that they stimulate lipid peroxidation. In vivo studies have failed, however, to show clear evidence of lipid peroxidation resulting from toxic exposures to these compounds. We have directly compared the abilities of three bipyridyl herbicides, diquat (DQ), paraquat (PQ) and benzyl viologen (BV), to generate superoxide anion radical (O2-.) in rat liver microsomes and H2O2 in hepatocytes and correlated this with their relative toxicities to a compromised isolated hepatocyte system. DQ was the most potent generator of O2-. and H2O2, being slightly more potent than BV and much better than PQ. This ability of the bipyridyls to generate active oxygen was positively correlated with the ability to induce toxicity in hepatocytes pretreated with 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) to inhibit their glutathione reductase activity, i.e. DQ greater than BV greater than PQ. DQ caused a rapid depletion of cellular GSH and a concomitant increase in GSSG in this system. Toxicity, measured as loss of plasma membrane integrity, was pronounced after only 30-60 min of incubation and was accompanied by a significant increase in lipid peroxidation. The onset of lipid peroxidation could not be separated temporally from the expression of toxicity. However, the total inhibition of lipid peroxidation by the antioxidants Trolox C, promethazine and N,N'-diphenyl-p-phenylenediamine only delayed toxicity, indicating that, even though lipid peroxidation may play some role in enhancing bipyridyl herbicide toxicity, it is not essential for the toxicity to manifest itself.
منابع مشابه
Lysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes
It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes
It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...
متن کاملComparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity.
1-methyl-4-phenylpyridine (MPP+) is the putative toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and is structurally similar to the herbicide paraquat (PQ++). We have therefore compared the effects of MPP+ and PQ++ on a well characterized experimental model, namely isolated rat hepatocytes. PQ++ generates reactive oxygen species within cells by redox cycling and its toxi...
متن کاملInvolvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity
Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid peroxidation occurred before the plasma membrane was disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical pharmacology
دوره 35 18 شماره
صفحات -
تاریخ انتشار 1986